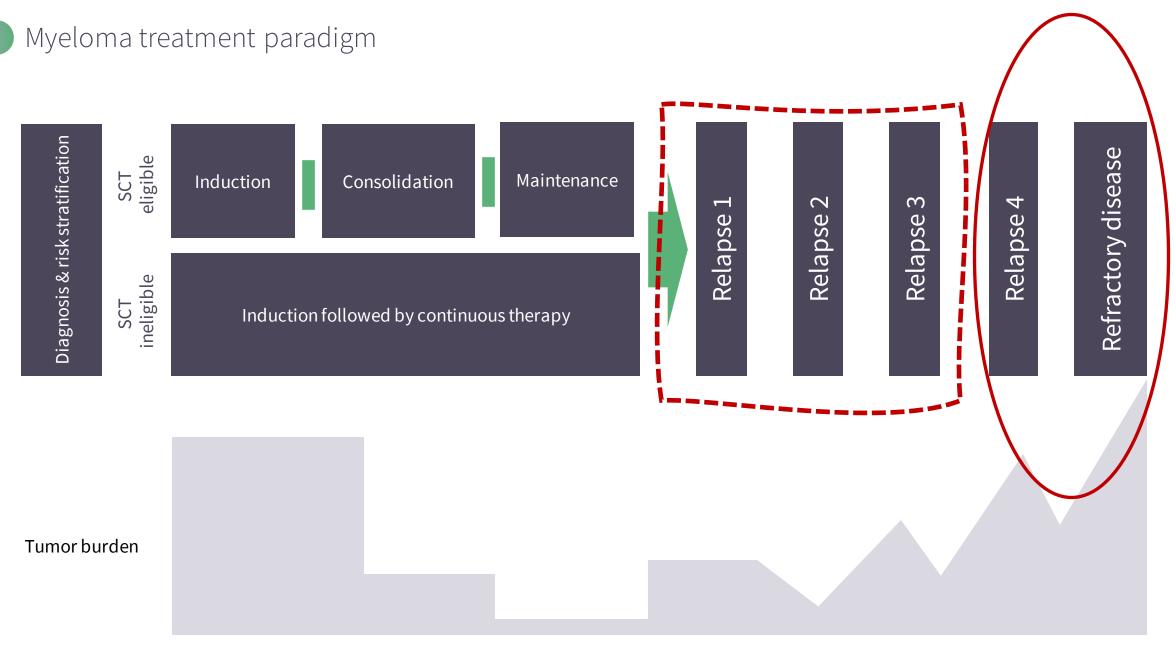

The ins and outs of CAR T cells in the real world

Biomarkers and patient eligibility for CAR T-cell therapies in multiple myeloma and DLBCL

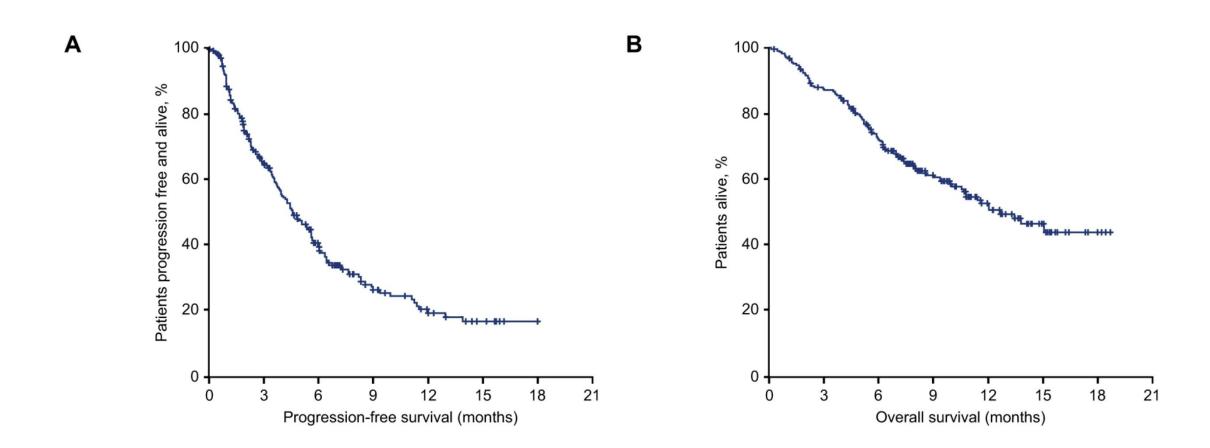
Presented by: Shaji Kumar

Kieron Dunleavy


Disclosures

- The following declarations are made for the last 3 years and the following 12 months (where arrangements have already been made):
 - Research grant(s)/in kind support: Celgene, Takeda, Janssen, BMS, KITE, Merck, Abbvie, Medimmune, Novartis, Roche-Genentech, Amgen, Tenebio, Carsgen
 - Participation in accredited CME/CPD: None
 - Consultant/strategic advisor: (with no personal payments) Celgene, Takeda, Janssen, Abbvie, Genentech, Amgen, Molecular Partners and (with personal payment) Oncopeptides, Genecentrix, Cellectar
 - Patents/shares or stocks related or unrelated to this presentation: None
 - Non-financial interests: None

Which of the following features have not been associated with shortened duration of response with CAR-T in multiple myeloma?


- A. Age
- B. Presence of extramedullary disease
- C. High risk cytogenetics
- D. Triple class refractory status

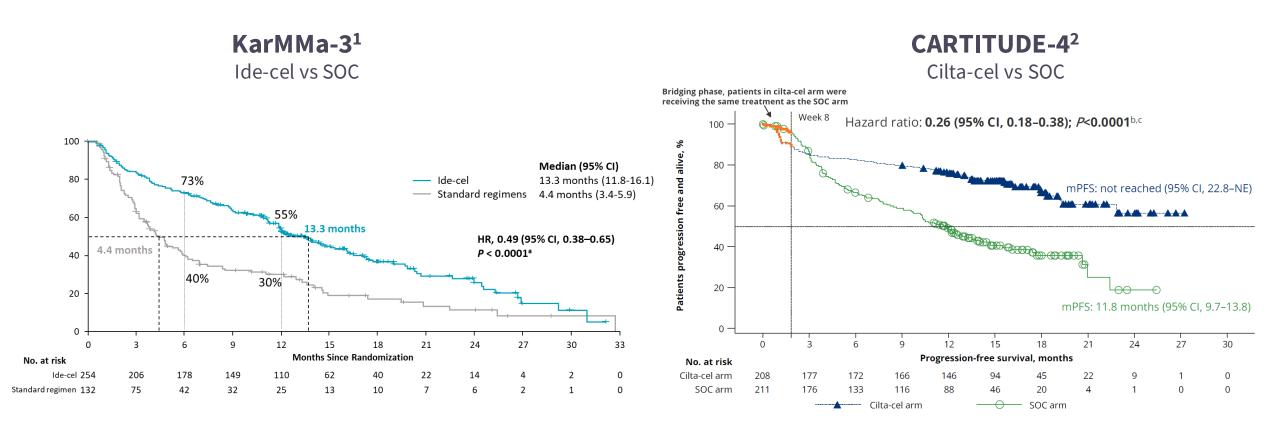
SCT, stem cell transplant. Shaji Kumar. Personal communication; Jun 9, 2023

Poor outcomes in triple class refractory patients – LocoMMotion¹

Approved CAR T-cell products for multiple myeloma¹

Feature	Idecabtagene vicleucel	Ciltacabtagene autoleucel	
Design	Second generation		
Ectodomain	One anti-BCMA Two anti-BCMA		
Endo-domain	CDζ,-4-1BB		
Pivotal study	KarMMa NCT03361748	CARTITUDE-1 NCT03548207	
FDA approval date	Mar 26, 2021	Feb 28, 2022	
EMA approval date	Aug 18, 2021 May 25, 2022		
Therapy class	BCMA-directed CAR T cell		
Indications	Triple-class exposed R/R MM		
Recommended dose	300–460 × 10 ⁶ CAR ⁺ T cells/kg 0.5–1.0 × 10 ⁶ CAR ⁺ T cel		

BCMA, B-cell maturation antigen; CAR, chimeric antigen receptor; MM, multiple myeloma; R/R, relapsed/refractory. **1.** Chekol Abebe E, et al. *Front Immunol.* 2022;13:991092.


Feature	KarMMa ¹ NCT03361748 Idecabtagene vicleucel	CARTITUDE-1 ^{2,3} NCT03548207 Ciltacabtagene autoleucel	
Number of patients	127	97	
ORR	73%	97.9%	
≥CR	33.1%	82.5%	
≥VGPR	57.9%	94.9%	
MRD negativity at 10 ⁻⁵	26%	58%	
PFS	8.6 months	34.9 months	
OS	24.8 months	NR (62.9% survival at 36 months)	
DoR	10.9 months 33.9 months		

Feature	KarMMa ¹ NCT03361748 Idecabtagene vicleucel	CARTITUDE-1 ^{2,3} NCT03548207 Ciltacabtagene autoleucel	
Any grade CRS	84%	94.8%	
Grade≥3 CRS	5%	5.1%	
Any grade ICANS	18%	21.6%	
Grade≥3 ICANS	3%	12.3%	
Deaths	44 patients (34%) PD, 27 AE, 9 Other, 8	35 patients (36%) PD, 17 Related, 6 Unrelated, 12	

CAR-T in earlier lines of treatment: Ide-cel or cilta-cel vs SOC (KarMMa-3¹ and CARTITUDE-4²)

Progression-free survival

CI, confidence interval; HR, hazard ratio; ide-cel, idecabtagene vilecleucel; mo, month; SOC, standard of care.

1. Rodriguez-Otero P. 5th European CAR T-Cell Meeting. Oral abstract #BA02-7. Feb 10, 2023; Rotterdam, NL. 2. Dhakal B. 2023 ASCO Annual Meeting. Oral abstract #LBA106. Jun 5, 2023; Chicago, US.

Most common challenges when considering CAR T-cell therapy in MM

- Age
 - Increased toxicity with older patients
- Comorbidities
 - Increases potential AE profile
- Rapid progression
 - Inability to wait for product manufacture
- Prior BCMA-directed therapy
 - Potential target loss
- Extramedullary disease, high-risk MM
 - Reduced durability of response
- High tumor burden
 - Increased risk of CRS, ICANS

Most common challenges when considering CAR T-cell therapy in MM

- Age
 - Increased toxicity with older patients
- Comorbidities
 - Increases potential AE profile
- Rapid progression
 - Inability to wait for product manufacture
- Prior BCMA-directed therapy
 - Potential target loss
- Extramedullary disease, high-risk MM
 - Reduced durability of response
- High tumor burden
 - Increased risk of CRS, ICANS

Factors affecting outcomes

Subgroup	Patients, n	ORR,%
Age, years		
<65	83	7
≥65	45	1
Male	76	1
Female	52	T
Ide-cel target dose		1 ! ! !
150 × 10 ⁶ CAR ⁺ T cells	4	1
300 × 10 ⁶ CAR ⁺ T cells	70	
450 × 10 ⁶ CAR ⁺ T cells	54	
R-ISS stage at enrolment		7 : : :
l or II	104	1
III	21	1
High risk cytogenetic abnormality		1 ! !
Yes	45	1
No	66	
Tumor burden at baseline		1 : : :
≥50% BMPCs	65	1
<50% BMPCs	57	
Tumor BCMA expression		1
≥50%	109	
<50%	3	1
Extramedullary disease		1 ! ! !
Yes	50	
No	78	T
Triple-refractory disease		1 ! !
Yes	108	1
No	20	
Penta-refractory disease		1
Yes	33	
No	95	7
Bridging therapy		1 ! !
Yes	112	1
No	16	

	_	Events/N	Median (95% CI)
All patients	ľ	42/95	NE (23.3 to NE)
Age ≥ 65 years	T	13/34	NE (24.4 to NE)
African American race	T	8/17	NE (6.8 to NE)
Baseline ISS stage III	—	9/14	14.1 (5.1 to NE)
No. of lines of prior therapy			
3	1	7/17	NE (12.9 to NE)
> 4	1	26/63	NE (24.3 to NE)
Triple-refractory	1	36/83	NE (24.3 to NE)
Penta-refractory	1	14/39	NE (24.4 to NE)
Cytogenetic risk group			
High risk	├	13/23	20.2 (9.4 to NE)
Standard risk	1	27/66	NE (24.4 to NE)
Baseline bone marrow % plasma cells			
≤ 30	1	21/57	NE (25.7 to NE)
> 30 to < 60	⊢	10/17	24.4 (15.9 to NE)
≥ 60	—	10/20	23.1 (5.5 to NE)
Baseline tumor BCMA expression			
< median value	Ī	14/31	NE (17.1 to NE)
≥ median value	Ĭ	11/30	NE (21.8 to NE)
Baseline plasmacytoma(s) present	—	11/19	12.9 (3.5 to NE)
	0 5 10 15 20 25 30		
	DOR (months)		

Adapted from Munshi NC, et al. N Engl J Med 2021; 384:705-716.

Martin T, et al. *J Clin Oncol*. 2023;41(6):1265-1274.

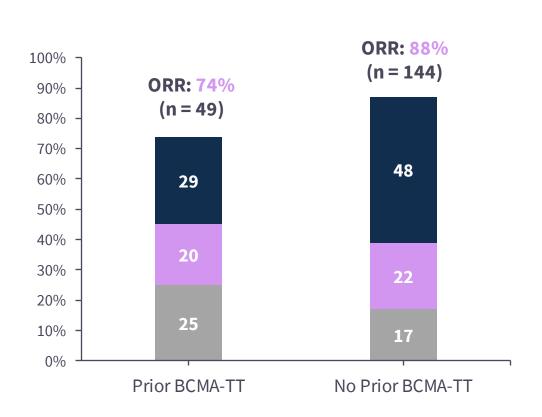
BCMA, B-cell maturation antigen; BMPC, bone marrow plasma cell; CAR, chimeric antigen receptor; CI, confidence interval; DOR, du ration of response; ide-cel, idecabtagene vicleuce; ORR, overall response rate; R-ISS, revised International Staging System.

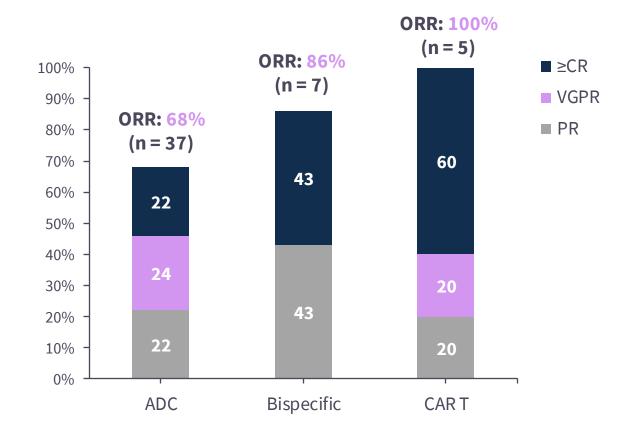
Experience with CAR T cells in patients who received prior BCMA-directed therapy

Idecabtagene vicleucel in the real world: Baseline characteristics

Characteristic*	SOC ide-cel (N = 159) ¹	KarMMa (N = 128) ²
Median age (range), years	64 (36–83)	61 (33–78)
Male, n (%)	91 (57)	76 (59)
Extramedullary disease, n (%)	76 (48)	50 (39)
ECOG performance status, n (%)		
0-1	127 (81)	125 (98)
2–4	29 (19)	3 (2)
R-ISS, n (%)		
1–11	93 (72)	104 (81)
III	35 (27)	21 (16)
High-risk cytogenetics, n (%)		
Any high-risk cytogenetics	49 (35)	45 (35)
del (17p)	32 (22)	23 (18)
t(4;14)	19 (14)	23 (18)
t(14;16)	6 (4)	6 (5)
Bridging therapy/ORR, n (%)	123/13 (77/11)	112 (88)
Prior BCMA therapy, n (%)	33 (21)	0
Median prior lines of therapy (range), n	7 (4–18)	6 (3–16)
Autologous HCT, n (%)	134 (84)	120 (94)
Refractory status, n (%)		
Triple-refractory	134 (84)	108 (84)
Penta-refractory	70 (44)	33 (26)

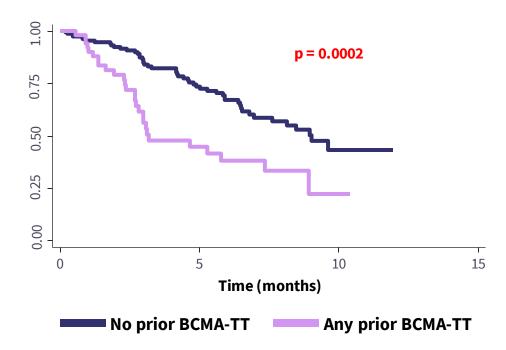
BCMA, B-cell maturation antigen; ECOG, Eastern Cooperative Oncology Group; HCT, hematopoietic stem cell transplant; ide-cel, idecabtagene vicleucel; ORR, overall response rate; R-ISS, revised International Staging System.


*Patients with unknown ECOG performance status, R-ISS, and high-risk cytogenetics are not included in the table.


^{1.} Hansen D, et al. *J Clin Oncol.* 2023;41(11);2087-2097. **2.** Munshi, et al. *NEJM.* 2021;384(8):705-716.

Efficacy outcomes by prior BCMA therapy $(N = 49)^{1,2}$

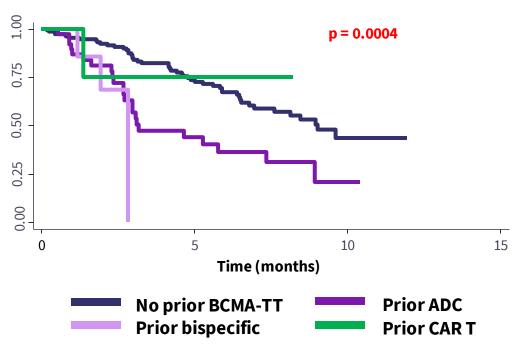
ORR by type of prior BCMA



ADC, antibody-drug conjugate; BCMA-TT, B-cell maturation antigen-targeted therapy; CAR T, chimeric antigen receptor T-cell therapy; CR, complete response; ORR, overall response rate; PR, partial response; VGPR, very good partial response.

^{1.} Ferreri CJ. Oral abstract #766. 64th ASH Annual Meeting & Exposition. Dec 12, 2022; New Orleans, US. 2. Doris Hansen. Personal communication; Jun 9, 2023.

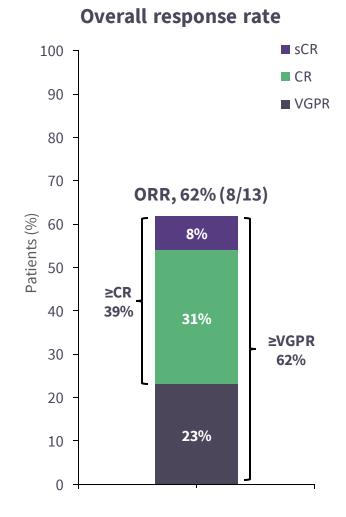
PFS outcomes by prior BCMA therapy^{1,2}


PFS by any prior BCMA therapy

Median PFS: 9.0 months

Median PFS: 3.2 months

PFS by type of BCMA therapy



Median PFS: 9.03 months Median PFS: 2.83 months Median PFS: 3.19 months Median PFS: Not reached

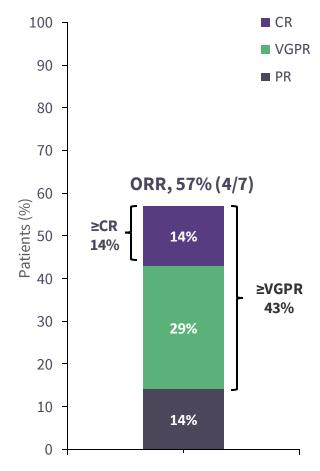
Efficacy of cilta-cel in patients treated with prior ADC ¹

CARTITUDE-2 (NCT04133636) Cohort C

- Overall, 5 of 7 patients in the MRD-evaluable subset* were MRD-negative at the 10⁻⁵ threshold
 - The 5 MRD-negative patients achieved best responses of sCR (n = 1), CR (n = 1), VGPR (n = 2), and PD (n = 1 [due to increased plasmacytoma size])
- ORR = 61.5% (95% CI, 31.6–86.1)
- Median time to first response = 1 month (range, 0.9–5.1 months)
 - Median time to best response = 2.6 months (range, 0.9–9.9 months)

ADC, antibody-drug conjugate; CR, complete response; MRD, minimal residual disease; ORR, overall response rate; PD, progressive disease; sCR, stringent CR; VGPR, very good partial response.

*Evaluable samples are those that pass calibration and quality control and include sufficient cells for evaluation at 10-5 threshold.


^{1.} Rodriguez-Otero. Immunotherapy and bispecifics: a real-life case discussion. 9th COMy World Congress; May 14, 2023; Virtual.

Efficacy of cilta-cel in patients with prior BsAb¹

CARTITUDE-2 (NCT04133636) Cohort C

- 2 of 3 patients in the MRD-evaluable subset* were MRD-negative at the 10⁻⁵ threshold
 - The 2 MRD-negative patients achieved CR and VGPR
- ORR = 57% (95% CI, 18.4–90.1)
 - 2 patients died before confirmed response
- Median time to first response = 0.9 months (range, 0.9–6.0 months)
 - Median time to best response = 1.4 months (range, 0.9–7.0 months)

Overall response rate

BsAb, bispecific antibody; CR, complete response; MRD, minimal residual disease; ORR, overall response rate; PR, partial response; VGPR, very good partial response.

*Evaluable samples are those that pass calibration and quality control and include sufficient cells for evaluation at 10⁻⁵ threshold.

^{1.} Rodriguez-Otero. Immunotherapy and bispecifics: a real-life case discussion. 9th COMy World Congress; May 14, 2023; Virtual.

Current limitations¹

Patient selection

- Stable or progressive disease after CT
- Relapsed or ineligible for ASCT
- Good medical condition

Production platforms

- Long-term vs short-term genetic modification
- Random vs site-specific transgene integration
- Ex vivo vs in vivo transduction
- Off-the-shelf CAR T cells

Toxicity

CRS

- Most prevalent adverse effect
- Elevated inflammatory cytokines due to immune activation

On-target off-tumor recognition

- Shared target antigen expression on malignant and healthy tissue
- Severity from manageable to severe toxicity (death)

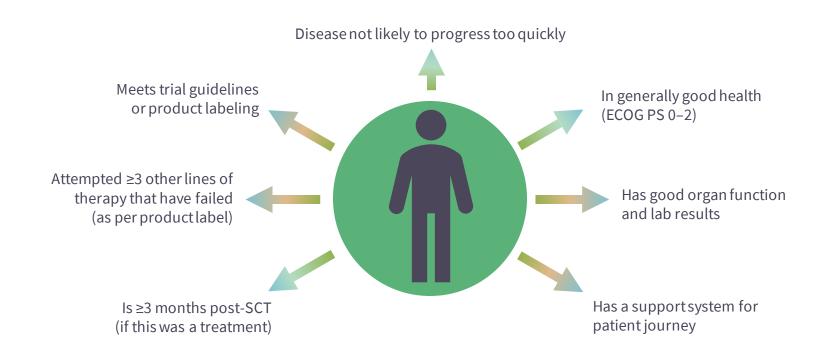
Neurotoxicity

 Reversible in most cases and pathophysiology remains unknown

Relapse

ALL adults **21–45%** Park, *et al*. 2018; Turtle, *et al*. 2016.

ALL children **20–67%** Maude, *et al.* 2014 and 2018; Fry, *et al.* 2018.


CLL **0-35%**Porter, *et al*. 2015; Turtle, *et al*. 2017.

DLBCL **0–11%** Turtle, *et al.* 2016. Schuster, *et al.* 2017

ALL, acute lymphoblastic leukemia; ASCT, autologous stem cell transplant; CAR, chimeric antigen receptor; CLL, chronic lymphocytic leukemia; CRS, cytokine release syndrome; CT, chemotherapy; DLBCL, diffuse large B-cell lymphoma.

1. Lesch S, et al. Semin Cancer Biol. 2020;65:80-90.

Eligibility for CAR T-cell therapy?

In general, more patients would be eligible for CAR T-cell therapy compared to stem cell transplantation

CAR, chimeric antigen receptor; ECOG PS, Eastern Cooperative Oncology Group performance status; SCT, stem cell transplant

^{1.} Dave H, et al. Curr Hematol Malig Rep. 2019;14(6):561-569. 2. Beaupierre A, et al. Clin J Oncol Nursing. 2019;23(2):27-34. 3. Perica K, et al. Biol Blood Marrow Transplant. 2018;24:1135-1141. 4. Cohen AD. American Society of Clinical Oncology Educational Book 38 (May 23, 2018) e6-e15.

Logistical considerations^{1,2}

How far is the closest treatment center and what CAR-T products do they offer?

Can the patient travel or remain close to the center for extended periods of time (~4 weeks)?

Does the patient have the ability to pay for treatment either through insurance coverage or other financing options?

When is the optimal time to harvest cells for best results?

- Sequencing same-target agents
- Risk-adapted therapy
- Use of maintenance
- Reinfusion

(Ship Shom () Lymphom () Lymphom () Lymphom () Lymphom () Lymphom () Lymphom () Lymphom () Lymphom () Lymphom () Ly

